A Comparison of Logistic Regression, Logic Regression, Classification Tree, and Random Forests to Identify Effective Gene-Gene and Gene-Environmental Interactions.

نویسندگان

  • Wonsuk Yoo
  • Brian A Ference
  • Michele L Cote
  • Ann Schwartz
چکیده

Genome wide association studies (GWAS) have identified numerous single nucleotide polymorphisms (SNPs) that are associated with a variety of common human diseases. Due to the weak marginal effect of most disease-associated SNPs, attention has recently turned to evaluating the combined effect of multiple disease-associated SNPs on the risk of disease. Several recent multigenic studies show potential evidence of applying multigenic approaches in association studies of various diseases including lung cancer. But the question remains as to the best methodology to analyze single nucleotide polymorphisms in multiple genes. In this work, we consider four methods-logistic regression, logic regression, classification tree, and random forests-to compare results for identifying important genes or gene-gene and gene-environmental interactions. To evaluate the performance of four methods, the cross-validation misclassification error and areas under the curves are provided. We performed a simulation study and applied them to the data from a large-scale, population-based, case-control study.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

خوشه‌بندی داده‌های بیان‌ژنی توسط عدم تشابه جنگل تصادفی

Background: The clustering of gene expression data plays an important role in the diagnosis and treatment of cancer. These kinds of data are typically involve in a large number of variables (genes), in comparison with number of samples (patients). Many clustering methods have been built based on the dissimilarity among observations that are calculated by a distance function. As increa...

متن کامل

Logic regression and its application in predicting diseases

Regression is one of the most important statistical tools in data analysis and study of the relationship between predictive variables and the response variable. in most issues, regression models and decision tress only can show the main effects of predictor variables on the response and considering interactions between variables does not exceed of two way and ultimately three-way, due to co...

متن کامل

Study of cyp2E1 gene RsaI/PstI polymorphisms in patients with gastric cancer in north of Iran

Background: North of Iran is amongst high incidence rate areas of gastric carcinoma where environmental carcinogenic compounds especially agricultural pesticides are massively used. Cytochrome P450 2E1 (CYP2E1) enzyme metabolically activates a large number of low molecular mass xenobiotics. The polymorphic nature of cyp2E1 gene control elements is associated with interindividual differences...

متن کامل

Forest Stand Types Classification Using Tree-Based Algorithms and SPOT-HRG Data

Forest types mapping, is one of the most necessary elements in the forest management and silviculture treatments. Traditional methods such as field surveys are almost time-consuming and cost-intensive. Improvements in remote sensing data sources and classification –estimation methods are preparing new opportunities for obtaining more accurate forest biophysical attributes maps. This research co...

متن کامل

Classification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest

Background & objective: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is used to effectively analyze the problems of large-p and smal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • International journal of applied science and technology

دوره 2 7  شماره 

صفحات  -

تاریخ انتشار 2012